High-Z Divertor Target Development for Alcator C-Mod

Bruce Lipschultz,
B. LaBombard & J. Terry, T. Chung, O. Grulke, S. Lisgo

MIT Plasma Fusion Science Center

Excerpts from Presentations to C-Mod PAC Meeting Feb. 23-25, 2004

(R. Nygren presenting)

Relation to IPPA goals

The C-Mod boundary physics program addresses a number of issues listed in the IPPA document.

- 3.1.1 Turbulence and transport (3.1.1.1, 3.1.1.2, 3.1.1.3)
 - Advance the scientific understanding of turbulent transport, forming the basis for a reliable predictive capability in externally controlled systems
- 3.1.4 Plasma boundary physics (3.1.4.1, 3.1.4.2, 3.1.4.3)
 - Advance the capability to predict detailed multi-phase plasma-wall interfaces at very high power- and particle-fluxes.
- 3.3.1 Profile control (3.3.1.4, 3.3.1.5 low n_e divertor operation)
 - Assess profile control methods for efficient current sustainment and confinement enhancement in the advanced tokamak, consistent with efficient divertor operation, for pulse lengths much greater than energy confinement times.
- 3.4.1 Plasma technologies (3.4.1.3 Plasma facing components)
 - Develop enabling technologies to support the goals of the scientific program, including methods for plasma measurements,; develop plasma facing components....

C-Mod Boundary physics program

- · Optimize the performance of fusion devices through
 - minimal core impurities (radiation, fuel dilution),
 - maximal first-wall lifetime, power handling
 - divertor design for optimal impurity/neutral compression and pumping
- To those ends we concentrate our research on
 - Edge plasma transport
 - Our primary emphasis because it is the determining factor for heat and particle loadings, impurity sources and transport
 - Neutral dynamics and fueling
 - Impurities
 - Develop predictive capability scaleable to reactor (ITER)
- We also identify and develop hardware and techniques for
 - Heat flux handling & density control

High heat flux handling & density control

- Important for the success of the C-Mod program
- Supports ITER for high-Z experience

Status

- Presently 0.5 1.0 s pulse, 6 MW RF
 - melting at some divertor leading edges (shielded from the core)
- Energy deposited will increase
 - Power increase by ~ x2, 5 seconds
 - $\Delta T^o = q_\perp (W/m^2) \times \gamma_{Mo} \times (t(sec))^{0.5}$
 - ∆T increases by ~ x4
 - extrapolation => melting at strike points if nothing is done
- No pumping, but H-mode densities might be too high for AT

Goals/Program

- Develop improved surface temperature monitoring
- Extend divertor heat-handling capability (~x2)
- Test Tungsten-brush tiles
- Extend power dissipation techniques (efficacy, low-n_e)
- · Cryopump operation

C-Mod continues to explore new concepts in particle and power control

- Based on our experience with SOL transport and neutral dynamics, we will investigate a new combined particle and power control operation...
 - Near double-null operation
 - Heat load to primary divertor
 - Particle pumping to secondary divertor
 - Cryopump on secondary divertor, outer leg
- Why? And what for?
 - Open divertor still 'plugged' by plasma
 - Radial fluxes are high, feeding 2nd divertor
 - Separates power and particle control functions
 - Simplifies each divertor design
- We also plan to use advanced divertor target materials (high Z)
 - Prototype tungsten brush modules (near term)

Tungsten brush tile development and testing part of the C-Mod program

Sample C-Mod Wbrush tile

2.5 cm

- Tungsten brush tiles have been proposed for BPXs
 - shown to handle up to 20 MW/m² steady state
 - · resists melt layer formation
 - no tokamak experience
- C-Mod is working towards W-brush tile installation and testing
 - based on original Sandia design
 - collaboration with Sandia
- C-Mod design aimed at
 - simplified construction and manufacture
 - maximization of W/support interface
- Plans
 - 2 different tile designs being manufactured & tested
 - plan for installation of ~ 5-10 tiles next vacuum break

Divertor and Edge Physics: Summary

- Our intent is to continue to make fundamental contributions with emphasis on the following:
 - Steady state profile transport analysis to understand
 - Poloidal variations, machine scalings (ITER) -> uncover underlying physics
 - Edge flows importance in core confinement and possibly L/H thresholds
 - Turbulence studies
 - Turbulence relationship to large convective transport
 - Improved images/analyses/scalings/simulations & predictive capability,
 - Control if possible
 - Develop predictive capability for ITER SOL and thus power flows to PFC surfaces
 - Measure and model the 3D aspects of neutral dynamics
 - Characterize impurities at every step in 'lifecycle' develop 'predictive codes'.
 - Develop separable divertor particle and heat control functions
 - Optimize high-Z first-wall and divertor for long-pulse & heat flux operation
- Providing vital support for overall physics program
 - Advanced Tokamak
 - Burning Plasma